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Atmospheric measurements of CO2 concentration are highly 
precise and provide an accurate, reliable measure of the 
increase of CO2 in the atmosphere every year1. Yet these meas-

urements cannot at present be used to verify global CO2 emissions 
estimated from energy data, because the uptake of CO2 by  the land 
and ocean CO2 sinks are not quanti!ed with high enough accuracy. 
Understanding the di"erence in amount between anthropogenic 
CO2 emissions and changes in atmospheric CO2 concentration 
requires good estimates of the sinks and good attribution of the 
causes of changes, both for the emissions and for their partitioning 
between the natural reservoirs.

Global CO2 emissions and their partitioning between the atmos-
phere and the land and ocean CO2 sinks can be established using a 
wide range of geophysical and economic data. We have constructed 
a global CO2 budget for each year during 1959–2008 and analysed 
the underlying drivers of each component. #e global increase in 
atmospheric CO2 was determined directly from measurements. CO2 
emissions from fossil fuel combustion were estimated on the basis 
of countries’ energy statistics. CO2 emissions from land-use change 
(LUC) were estimated using deforestation and other land-use data, 
!re observations from space, and assumptions on the carbon density 
of vegetation and soils and the fate of carbon. #e time evolution of 
the land and ocean CO2 sinks, however, cannot be estimated directly 
from observations. For these terms, we used state-of-the-art models 
on which we imposed the observed meteorological conditions of the 
past few decades. #e resulting global CO2 budget provides insight 
into the global carbon cycle and the emerging trends.

Fossil fuel CO2 emissions
CO2 emissions from fossil fuel combustion, including small 
contributions from cement production and gas $aring, were 
8.7±0.5 Pg C yr−1 in 2008, an increase of 2.0% on 2007, 29% on 
2000 and 41% above emissions in 1990 (Supplementary Table 1; 
see Methods). Emissions increased at a rate of 3.4% yr−1 between 
2000 and 2008, compared with 1.0% yr−1 in the 1990s (Fig. 1). 
Emissions continued to track the average of the most carbon-
intensive family of scenarios put forward by the Intergovernmental 
Panel on Climate Change2,3 (IPCC; scenario A1FI in Fig. 1a). Since 
1990, the growth in fossil fuel CO2 emissions has been dominated 
by countries that do not have emissions limitations in the so-called 
non-Annex B of the Kyoto Protocol (mostly emerging economies 
in developing countries), where emissions have more than doubled 
in that time (Fig. 1b). Among Annex B countries (mostly advanced 
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economies with emissions limitations), growth in some has been 
o"set by declines in others. #is recent growth in CO2 emissions 
parallels a shi& in the largest fuel emission source from oil to coal. 
Coal contributed 40% of the fossil fuel CO2 emissions in 2008, 
compared with 37% for 1990–2000, whereas the contribution of 
oil changed from 41% for 1990–2000 to 36% in 2008 (Fig. 1c). #is 
shi& in the dominant source of fossil fuel emissions has reversed 
the prevalence of oil since 1968. #e growth in emissions since 
2000 was also accompanied by an increase in the world per-capita 
emissions from 1.1 metric tons of carbon in 2000 (Fig. 1d) to an 
all-time high of 1.3 metric tons of carbon in 2008.

#ere is growing evidence that the rapid growth in international 
trade4–10 and a shi& of Annex B economic activity towards services8 
were signi!cant in driving non-Annex B CO2 emission increases 
due to fossil fuels. Several recent studies provide indicators of 
the magnitude and time evolution of the share of non-Annex B 
emission growth that was due to production of manufactured 
products exported and consumed in Annex B countries. In 2001, 
the equivalent of 0.22 Pg C was emitted in non-Annex B countries 
to produce internationally traded products consumed in Annex B 
countries4. In China alone, 30% of the growth in emissions between 
1990 and 2002 was attributable to the production of exports from 
China that were consumed in other countries6, and the share of the 
growth increased to 50% between 2002 and 2005 (ref. 7). In 1990, 
16% of Chinese emissions were from the production of exports, 
increasing to 30% in 2005. Over half of the exported products were 
destined for Annex B countries6,7. Complementary studies in some 
Annex B countries showed that consumption-based emissions (that 
is, emissions including imported products from non-Annex B coun-
tries, but excluding goods and services) were increasing faster than 
emissions from domestic production8,9. In the UK, for instance, 
within-country emissions decreased by 5% between 1992 and 2004, 
whereas consumption-based emissions increased by 12% (ref. 8). In 
the USA, within-country emissions increased by 6% between 1997 
and 2004, whereas consumption-based emissions increased by 17% 
(ref. 9). In both cases, a key factor driving the growth in consump-
tion-based emissions was the import of manufactured products 
from China6–9. Taken together, these studies imply that a consider-
able share of the growth of emissions from non-Annex B countries 
was associated with international trade. #is explained around 
one-quarter of the growth in non-Annex B emissions since 2000.

#e growth in the world gross domestic product (GDP) was a 
key driver in the recent increase in CO2 emissions2. Consequently, 
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the global !nancial crisis that a"ected markets in 2008 also had an 
e"ect on the global CO2 emissions and probably explains the mod-
est growth in emissions of 2.0% since 2007, compared with the faster 
than average growth of 3.6% yr−1 observed for 2000–2007. We predict 
a decrease of 2.8% in global CO2 emissions for 2009 using the change 
in GDP projected by the International Monetary Fund (−1.1% as of 
October 2009) and assuming that the carbon intensity of world GDP 
has continued to improve following its long-term trend of −1.7% yr−1 
(refs 11, 12; Fig. 1a). #e abrupt decrease in GDP in 2009 could bring 
global CO2 emissions back to just below their 2007 level and into the 
middle range of the emissions scenarios that were used by the IPCC 
to project climate this century3. #e evolution of global CO2 emis-
sions a&er 2009 will depend on the subsequent trends in GDP and on 
the evolution of the carbon intensity of GDP, for instance as a result of 
countries following international agreements to curb CO2 emissions.

Land-use change CO2 emissions
Emissions from LUC are the second-largest anthropogenic source 
of CO2. Deforestation, logging and intensive cultivation of crop-
land soils emit CO2. #ese emissions are partly compensated by 
CO2 uptake from the regrowth of secondary vegetation and the 
rebuilding of soil carbon pools following a"orestation, aban-
donment of agriculture (including the fallow phase of shi&ing 
cultivation), !re exclusion and the shi& to agricultural practices 
that conserve soil carbon. Unlike fossil fuel emissions, which 
re$ect instantaneous economic activity, LUC emissions are due to 
both current deforestation and the carry-over e"ects of CO2 losses 
from areas deforested in previous years.

Here we have used a revised estimate11 of the net CO2 $ux 
resulting from LUC based on United Nations data for LUC areas 
(available until 2005) and a book-keeping method13. For the period 
1990–2005, net LUC CO2 emissions were 1.5±0.7 Pg C yr−1, and were 
dominated by tropical deforestation. In the deforestation process, 
!re is the primary means by which forests are converted to pastures 
or croplands14, a&er timber exploitation. To estimate LUC emissions 
a&er 2005, we used emissions due to !re in deforestation areas15 as a 
proxy for deforestation emissions (Methods).

In 2008, the !re emissions associated with deforestation were 
0.3 Pg C yr−1 less than their 1997–2008 average of 0.7 Pg C yr−1, 
with the largest reductions being in southeast Asia (−65%) and 
tropical America (−40%). Lower-than-average deforestation rates 
reported in the Brazilian Amazon rainforest16 corroborate lower 
LUC emissions in 2008 in tropical America. Combining the 
long-term average global LUC $ux, 1.5 Pg C yr−1, with the 2008 
deforestation !re anomaly, −0.3 Pg C yr−1, our best estimate for 
2008 LUC emissions is 1.2 Pg C yr−1. Wet La Niña conditions in 
2008 probably limited !re use and deforestation rates in southeast 
Asia, particularly in Indonesia17. In the Amazon basin, climate 
conditions were not anomalous, suggesting that other factors 
caused the decrease in 2008 deforestation rates, which for the 
Brazilian Amazon rainforest was the continuation of a decreasing 
trend following high deforestation rates in 2002–2004 (ref. 16).

Taken together, the total CO2 emission from fossil fuel 
combustion and LUC was 9.9±0.9 Pg C yr−1 in 2008. #e rela-
tive contribution of LUC CO2 emissions to total anthropogenic 
CO2 emissions decreased from 20% in 1990–2000 to 12% in 
2008, owing to increasing fossil fuel emissions and below-aver-
age deforestation emissions in 2008. Although LUC emissions 
were the smaller factor, their uncertainty, ±0.7 Pg C yr−1, is larger 
than the uncertainty of ±0.5 Pg C yr−1 associated with fossil fuel 
emissions (Methods).

Atmospheric CO2 growth and CO2 sinks
On average, 43% of the total CO2 emissions each year between 
1959 and 2008 remained in the atmosphere, but this fraction is 
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Figure 1 | Fossil fuel CO2 and per-capita emissions since 1990. 
a–c, Fossil fuel emissions for the globe (a), Annex B countries (mostly 
advanced economies; green) and non-Annex B countries (mostly 
developing countries; blue) (b) and, specifically, coal (blue), oil (black), 
gas combustion (green) and cement production (purple) (c). The data in 
all panels are the annual mean data. Panel a also shows the projections 
averaged by scenario family from the IPCC Special Report on Emissions 
Scenarios (full coloured lines3), as in ref. 2. The grey shading in a is the 
uncertainty in emissions. The blue shading covers all CO2 emissions 
scenarios used to project climate by the IPCC Fourth Assessment Report. 
The red dot and dashed line in a are the projected CO2 emissions for 2009 
(see text). d, Global per-capita emissions.
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subject to very large year-to-year variability (Fig. 2a). #is ‘air-
borne fraction’ increased on average by 0.3±0.2% yr−1 between 
1959 and 2008. #ere is a 90% probability that this increasing 
trend is signi!cant taking into account the background variability 
(Methods). #e trend and its signi!cance are sensitive to estimates 
of LUC emissions, which have large uncertainties. We quanti!ed 
the impact of LUC uncertainty on the airborne-fraction trend 
using a range of LUC estimates (Supplementary Information). For 
all nine published LUC estimates considered, the trend in the air-
borne fraction was positive with a signi!cance level at or above 
90%. We conclude that a positive trend in the airborne fraction 
is ‘likely’ (66% con!dence interval), according to the terminology 
developed by the IPCC18.

A positive trend in the airborne fraction could be explained by 
several factors. First, the atmospheric CO2 concentration could be 
increasing on a timescale shorter than those regulating the rate 
of uptake of carbon sinks. Second, both the land and ocean CO2 
sinks are expected to decrease in e'ciency at high ambient CO2 
concentration because of the limits of CO2 fertilization on land 
and the decrease in carbonate concentration, which bu"ers CO2 
in the ocean19. #ird, the land and/or ocean CO2 sink could be 
responding to climate variability and change. Finally, sink proc-
esses not considered in current models may be contributing to the 
observed changes19.

Combined evidence from atmosphere and ocean observations 
constrains the mean uptake rates of land and ocean CO2 sinks to 
2.6±0.7 and 2.2±0.4 Pg C yr−1 for 1990–2000, respectively11,19–22. We 
estimated the year-to-year variability and trends in the land and 
ocean CO2 sinks using a series of global models that represent the 
complex processes governing the carbon cycle in these two pools 
(Methods). #e models were forced by observed changes in global 
atmospheric CO2 concentration and by variable climate !elds.

For 2008, the models estimated that the uptake rates for land and 
ocean CO2 sinks were 4.7±1.2 and 2.3±0.4 Pg C yr−1, respectively. 
#e land CO2 sink was larger (in terms of uptake rate) and the ocean 
CO2 sink was smaller in 2008, relative to the previous three years 
(Fig. 2), because the El Niño/Southern Oscillation (ENSO) was in 
a positive (La Niña) state in 2008. During La Niña conditions, the 
land CO2 sink is enhanced owing to lower temperatures and wetter 
conditions in the tropics, whereas the ocean CO2 sink is reduced 
owing to more intense equatorial upwelling of carbon-rich waters. 
Observations in the equatorial Paci!c Ocean corroborate the 
lower ocean CO2 sink in 2008 (ref. 23) estimated by the models. 
#e ocean models also attributed the low ocean CO2 sink in 2008 
in part to a weaker Southern Ocean sink, in response to the con-
tinuing increase in the southern annular mode24,25. #e model 
results over 1980–2006 were broadly consistent with the results 
from atmospheric inverse models, which estimate the regional 
distribution of air–surface CO2 $uxes using the spatiotemporal 
variability in atmospheric CO2 concentration measurements26,27 
(Supplementary Information).

#e land biosphere models showed an increasing global land 
CO2 sink between 1959 and 2008 (Fig. 2c), with large year-to-
year variability. #e variability was primarily driven by variability 
in precipitation, surface temperature and radiation28–30. During 
1959–2008, the fraction of the total CO2 emissions that was absorbed 
by the land had no signi!cant global trend. #e ocean models 
showed an increasing global ocean CO2 sink between 1959 and 2008 
(Fig. 2d), with small year-to-year variability compared with the land 
sink. #e modelled CO2 sink increased at a lower rate than the emis-
sions, and the fraction of the total CO2 emissions that was absorbed 
by the oceans decreased by 0.60±0.15% yr−1 (Supplementary Table 1) 
as a result. #e long-term decrease in the fraction of the emissions 
taken up by the oceans cannot be veri!ed from ocean observa-
tions alone because of the lack of global data coverage31. However, 
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Figure 2 | Components of the global CO2 budget. a, The atmospheric 
CO2 growth rate. b, CO2 emissions from fossil fuel combustion and 
cement production, and from LUC. c, Land CO2 sink (negative values 
correspond to land uptake). d, Ocean CO2 sink (negative values 
correspond to ocean uptake). e, The residual sum of all sources and sinks. 
The land and ocean sinks (c,d) are shown as an average of several models 
normalized to the observed mean land and ocean sinks for 1990–2000 
(refs 11,19). The shaded area is the uncertainty associated with each 
component. See Methods for the sources of data and an explanation 
of uncertainties.
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a weakening of the regional CO2 sinks has been observed since at 
least 1990 (Fig. 3), from repeated surface-ocean CO2 observations 
in the North Atlantic Ocean32,33 and in the Southern Ocean31,34, and 
from the spatial distribution of atmospheric CO2 increases in the 
Southern Ocean24. #ese observations suggest that in some ocean 
regions, the ocean carbon cycle is responding to climate variability 
and climate change in a way that can a"ect the net uptake of CO2 by 
the ocean. In contrast, increasing air–sea CO2 $ux was observed in 
the North Paci!c Ocean35.

We identi!ed the drivers of the trends in land and ocean CO2 
sinks in the models by forcing a subset of the models with increas-
ing atmospheric CO2 concentration alone (no changes in climate; 
see Supplementary Information). #ese additional simulations iso-
late the e"ect of climate from the combined e"ects of rapidly rising 
CO2 and high ambient CO2 concentration. In all models tested, 
the land and ocean CO2 sinks increased at the same rate (in one 
model) or faster (in six models) when climate did not change. We 
combined the land and ocean CO2 sinks estimated by the models 
with the emissions to reproduce the time evolution of the airborne 
fraction. #e model-based airborne fraction decreased at a rate of 
0.8% yr−1 when the models were forced by increasing CO2 concen-
tration alone, and increased at a rate of 0.1% yr−1 (close to the rate 
of 0.3% yr−1 estimated from observations) when the models were 
forced by both increasing CO2 concentration and changes in climate. 
#ese simulations do not completely exclude a role for rapidly ris-
ing CO2 or high ambient CO2 concentration because the models are 
subject to uncertainty, particularly due to their coarse resolution36 
in the ocean and to errors in observed precipitation and radiation 
on land.

Our estimates of sources and sinks of CO2 were based on largely 
independent data and methods. #us, when all the sources and 
sinks were summed every year they did not necessarily add to zero, 
because of the errors in the various methods. #e sum of all CO2 
sources and sinks, which we call the ‘residual’, spanned a range 
of ±2.1 Pg C yr−1 (Fig. 2e). #is residual was not explained by the 
atmospheric CO2 growth rate, the CO2 emissions from fossil fuel 
combustion or the ocean uptake, because the uncertainties in these 
components were much smaller than the variability of the resid-
ual. Errors in LUC $ux may explain a small part of the residual, 
for instance during the late 1990s, when !res in Indonesia were 
partly caused by land clearance taking advantage of the drought 
conditions17. Our !re-based LUC anomalies for 1997 were 0.7 Pg C 
greater than normal and account for one-half of the residual for 
that year. Overall, the residual was most probably caused by the 

regional responses of terrestrial vegetation to climate variability, 
indicating that land models overestimated the response of vege-
tation to the relatively cool/wet La Niña-like climatic conditions 
of the mid 1970s and underestimated the response to the vol-
canic eruption of Mount Pinatubo, in the Philippines, in the early 
1990s. #is later underestimation has been explained elsewhere 
as resulting from a missing response in the models to the aerosol-
induced increase in the di"use-light component of surface irradi-
ance, and the subsequent enhancement of light penetration into 
vegetation canopies29.

As a result of all CO2 sources and sinks, atmospheric CO2 growth 
was 3.9±0.1 Pg C yr−1 in 2008, an increase of 1.8 ppm, which is 
0.6 Pg C yr−1 less than the average of the previous three years despite 
there being an increase in CO2 emissions from fossil fuel combus-
tion. Average atmospheric CO2 in 2008 reached a concentration of 
385 ppm, which is 38% above pre-industrial levels. #e lower-than-
average atmospheric growth rate was probably driven by a high 
land CO2 uptake due to the La Niña state of ENSO, and by reduced 
rates of deforestation in southeast Asia and in the Amazon16, as 
indicated by lower rates of !re and clear-cut activities measured at 
the deforestation frontier.

Filling the gaps in the global CO2 budget
Progress has been made in monitoring the trends in the carbon 
cycle and understanding their drivers. However, major gaps 
remain, particularly in our ability to link anthropogenic CO2 
emissions to atmospheric CO2 concentration on a year-to-year 
basis; this creates a multi-year delay and adds uncertainty to 
our capacity to quantify the e"ectiveness of climate mitigation 
policies. To !ll this gap, the residual CO2 $ux from the sum 
of all known components of the global CO2 budget needs to 
be reduced, from its current range of ±2.1 Pg C yr−1, to below 
the uncertainty in global CO2 emissions, ±0.9 Pg C yr−1. If this 
can be achieved with improvements in models and observing 
systems, geophysical data could provide constraints on global 
CO2 emissions estimates.

#e likely recent trend in the airborne fraction of the total 
emissions suggests that the growth in uptake rate of CO2 sinks is not 
keeping up with the increase in CO2 emissions11. #e models used 
here indicate that this trend could be due to the response of the land 
and ocean CO2 sinks to climate variability and climate change. If the 
model response to recent changes in climate is correct, this would 
lend support to the positive feedback between climate and the car-
bon cycle that was predicted by many coupled climate–carbon cycle 
models37. However, these models do not yet include many processes 
and reservoirs that may be important, such as peat, buried carbon 
in permafrost soils, wild !res, ocean eddies and the response of 
marine ecosystems to ocean acidi!cation. An improved knowledge 
of regional trends would help to constrain the climate–carbon cycle 
feedback better.

#e current growth in global anthropogenic CO2 emissions is 
tightly linked to the growth in GDP. On the basis of the projected 
changes in GDP, it is likely that CO2 emissions in 2009 will revert to 
their 2007 levels. #e key to sustained emissions reductions a&er the 
global economy recovers lies in restructuring the primary energy 
use to decouple emissions from GDP12.

Methods
Original data to complete the global CO2 budget are generated by multiple agen-
cies and research groups around the world and are collated annually by the Global 
Carbon Project (http://www.globalcarbonproject.org). CO2 emissions from fossil 
fuel and other industrial processes between 1959 and 2006 were based on United 
Nations Energy Statistics and cement data from the US Geological Survey38, and 
were provided by the Carbon Dioxide Information Analysis Center. For 2007 and 
2008, increases in fossil fuel emissions were calculated using BP energy data39,40 and 
increases in cement emissions were based on the preliminary data41 on 20 of the 
largest producers (amounting to over 80% of total global production), assuming 

120˚ E 180˚ 120˚ W 60˚ E

60˚ N

30˚ N

30˚ S

60˚ S

0˚

0˚60˚ W

A
B

2.0

0.3

0.1

–0.1

–0.3

–2.0

Sea–air CO
2  trend

atm
 yr –1)

Longitude

La
tit

ud
e

Figure 3 | Trends in the observed partial pressure of CO2 for ocean minus 
air, for 1981–2007. The observed trends are calculated by fitting a linear 
trend to repeated measurements of surface-ocean and air CO2 as in refs 31 
and 32. Positive (red) values indicate regions where the partial pressure of 
CO2 in the ocean is increasing faster than atmospheric CO2. Large, medium 
and small dots are plotted for trends with errors of <0.25, 0.25–0.50 and 
>0.50 atm yr−1, respectively. In southern circumpolar waters (A), the 
trends were estimated from austral winter data31. In the South Indian Ocean 
(B), the trends were estimated for 1991–2007 (ref. 34) only.
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the same fractional change as in 2005–2006 for smaller producers. #e gas-$aring 
emissions for 2006 were also used for 2007 and 2008. Per-capita emissions were 
compiled by the Carbon Dioxide Information Analysis Center between 1959 and 
2006. For 2007 and 2008, per-capita emissions were based on our global CO2 emis-
sions and world population from the US Census Bureau. We used an uncertainty in 
CO2 emissions of ±6% (ref. 42), representing a 1σ (66%) con!dence interval. #is 
uncertainty was revised upwards from the 5% used in ref. 11 beccause of the larger 
share of global emissions from non-Annex B countries.

We calculated CO2 emissions from LUC using a book-keeping method13 with 
the revised statistical data from the Food and Agriculture Organization of the 
United Nations Global Forest Resource Assessment43, as in ref. 11. We used !re 
emissions estimates from the Oak Ridge National Laboratory Distributed Active 
Archive Center’s Global Fire Emissions Database, version 2, where information 
on burned area and !re activity from various satellite sensors44 is combined with 
a biogeochemical model to estimate carbon stocks and combustion parameters45. 
We sampled only those 1° × 1° grid cells undergoing active deforestation during 
the 2000–2005 period, using existing maps46. Emissions from the ‘maintenance 
!res’ (for example pasture burning) at the deforestation frontier are probably 
an order of magnitude lower than deforestation emissions because of lower fuel 
loads in pasture and cropland ecosystems45; in our analyses, we therefore included 
90% of the total estimated emissions. #e use of !re estimates assumes that 
year-to-year changes in !re CO2 emissions were the main cause of interannual 
variability in LUC emissions and that the delayed emissions from decomposition 
were relatively constant. #e variability in LUC estimated from !re emissions 
correlated with the variability estimated by the book-keeping method when 
they overlap (correlation coe'cient, r = 0.54; n = 12). We used an uncertainty of 
±0.7 Pg C yr−1, representing a 1σ (66%) con!dence interval. #is uncertainty was 
revised upwards from the ±0.5 Pg C yr−1 used in ref. 11, to acknowledge recently 
identi!ed inconsistencies between deforestation and agricultural conversion 
statistics (see Supplementary Information).

#e data on annual growth in atmospheric CO2 concentration was provided 
by the US National Oceanic and Atmospheric Administration Earth System 
Research Laboratory (http://www.esrl.noaa.gov/gmd/ccgg/trends). We used the 
global mean data a&er 1980 and the Mauna Loa data between 1959 and 1980. 
#e land CO2 sink was estimated using !ve global vegetation models updated 
from ref. 28 (see Supplementary Information). #e models represent the proc-
esses governing ecosystem carbon dynamics in biomass, litter and soil pools and 
the space–time distribution of CO2 $uxes exchanged with the overlying atmos-
phere. All models were forced by observed atmospheric CO2 concentration and a 
combination of meteorological !elds from the Climatic Research Unit observed 
climate data and the US National Centers for Environmental Prediction reanalysis 
product47. #e ocean CO2 sink was estimated using four ocean general circulation 
models coupled to ocean biogeochemistry models24,48–50. #e models represent 
the physical, chemical and biological processes governing the marine carbon 
cycle and the space–time distribution of CO2 $uxes exchanged with the overlying 
atmosphere. All models were forced by meteorological !elds from the US National 
Centers for Environmental Prediction reanalysis product47. #e land and ocean 
CO2 sinks were estimated from the mean of all models. We corrected the model 
mean to agree with the observed uptake rates for land and ocean CO2 sinks in 
1990–2000 (refs 11,19). #us, the models were used to assess the year-to-year 
variability and trends in the land and ocean CO2 sinks only. #e uncertainty for a 
given time period combined the uncertainty for 1990–2000 (ref. 19) and ±1 mean 
absolute deviation for all models around the central model estimate for the given 
period (see Supplementary Information).

#e signi!cance of the trend in airborne fraction was computed from the 
monthly deseasonalized atmospheric CO2 data as detailed in ref. 11. #e noise 
in the airborne fraction was reduced by removing the part of the variability 
associated with the ENSO and volcanic-activity indices. #e statistical signi!-
cance was computed from a 1,000-member Monte Carlo simulation with noise 
properties similar to those of the airborne fraction. #e standard deviation of the 
1,000-member simulation provided the uncertainty in the results.
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